Intersections of t-reguli, rational curves, and orthogonal Latin squares
نویسندگان
چکیده
منابع مشابه
Nearly Orthogonal Latin Squares
A Latin square of order n is an n by n array in which every row and column is a permutation of a set N of n elements. Let L = [li,j ] and M = [mi,j ] be two Latin squares of even order n, based on the same N -set. Define the superposition of L onto M to be the n by n array A = (li,j ,mi,j). When n is even, L and M are said to be nearly orthogonal if the superposition of L onto M has every order...
متن کاملMore mutually orthogonal Latin squares
A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. In this paper we give some constructions of pairwise orthogonal diagonal Latin squares. As an application of such constructions we obtain some new infinite classes of pairwise orthogonal diagonal Latin squares which are useful in the study of pairwise orthogonal diagonal Latin squares.
متن کاملOrthogonal latin squares of Sudoku type
Orthogonal latin squares of Sudoku type Hans-Dietrich Gronau Universität Rostock, Inst. für Mathematik 18051 Rostock, Germany We present results on the existence of orthogonal latin squares and latin rectangles of Sudoku type.
متن کاملEnumeration of self-orthogonal Latin squares
The enumeration of self-orthogonal Latin squares (SOLS) of a given order seems to be an open problem in the literature on combinatorial designs. The existence of at least one SOLS is guaranteed for any order except 2, 3 and 6, but it is not known how many of these squares of a given order exist. In this talk we present enumeration tables of unequal SOLS, idempotent SOLS, isomorphism classes of ...
متن کاملMaximal sets of mutually orthogonal Latin squares
Maximal sets of s mutually orthogonal Latin squares of order v are constructed for in nitely many new pairs (s; v). c © 1999 Published by Elsevier Science B.V. All rights reserved
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1982
ISSN: 0024-3795
DOI: 10.1016/0024-3795(82)90030-1